1. Tujuan
- Mengetahui apa itu aplikasi decoder dan decoder
- Mengetahui cara merangkai aplikasi decoder dan encoder
2. Alat dan bahan
- POWER SUPPLY
Power Supply atau dalam bahasa Indonesia disebut dengan Catu Daya adalah suatu alat listrik yang dapat menyediakan energi listrik untuk perangkat listrik ataupun elektronika lainnya.
- Voltmeter DC
Difungsikan guna mengukur besarnya tegangan listrik yang terdapat dalam suatu rangkaian listrik. Dimana, untuk penyusunannya dilakukan secara paralel sesuai pada lokasi komponen yang sedang diukur.
- POWER SUPPLY
- Voltmeter DC
Difungsikan guna mengukur besarnya tegangan listrik yang terdapat dalam suatu rangkaian listrik. Dimana, untuk penyusunannya dilakukan secara paralel sesuai pada lokasi komponen yang sedang diukur.
Logic probe atau logic tester adalah alat yang biasa digunakan untuk menganalisa dan mengecek status logika (High atau Low) yang keluar dari rangkaian digital. Objek yang diukur oleh logic probe ini adalah tegangan oleh karena itu biasanya rangkaian logic probe harus menggunakan tegangan luar (bukan dari rangkaian logika yang ingin diukur) seperti baterai. Alat ini biasa digunakan pada IC TTL ataupun CMOS (Complementary metal-oxide semiconductor).
Logic probe menggunakan dua lampu indikator led yang berbeda warna untuk membedakan keluaran High atau Low. Yang umum dipakai yaitu LED warna merah untuk menandakan output berlogika HIGH (1) dan warna hijau untuk menandakan output berlogika LOW(0).
- Baterai (12 V)
- Baterai (12 V)
3. Dasar Teori
- Transistor NPN
Transistor adalah komponen elektronika semikonduktor yang memiliki 3 kaki elektroda, yaitu Basis (Dasar), Kolektor (Pengumpul) dan Emitor (Pemancar). Komponen ini berfungsi sebagai penguat, pemutus dan penyambung (switching), stabilitasi tegangan, modulasi sinyal dan masih banyak lagi fungsi lainnya. Selain itu, transistor juga dapat digunakan sebagai kran listrik sehingga dapat mengalirkan listrik dengan sangat akurat dan sumber listriknya.
Transistor sebenarnya berasal dari kata “transfer” yang berarti pemindahan dan “resistor” yang berarti penghambat. Dari kedua kata tersebut dapat kita simpulkan, pengertian Transistor adalah pemindahan atau peralihan bahan setengah penghantar menjadi suhu tertentu. Transistor pertama kali ditemukan pada tahun 1948 oleh William Shockley, John Barden dan W.H, Brattain. Tetapi, komponen ini mulai digunakan pada tahun 1958. Jenis Transistor terbagi menjadi 2, yaitu transistor tipe P-N-P dan transistor N-P-N.
BC547
- Baterai
Baterai (Battery) adalah sebuah alat yang dapat merubah energi kimia yang disimpannya menjadi energi Listrik yang dapat digunakan oleh suatu perangkat Elektronik.
- Resistor
Resistor atau disebut juga dengan Hambatan adalah komponen elektronika pasif yang berfungsi untuk menghambat dan mengatur arus listrik dalam suatu rangkaian elektronika. Satuan nilai Resistor atau Hambatan adalah Ohm. Nilai Resistor biasanya diwakili dengan kode angka ataupun gelang warna yang terdapat di badan resistor. Hambatan resistor sering disebut juga dengan resistansi atau resistance.
Rumus dari Rangkaian Seri Resistor adalah :
Rtotal = R1 + R2 + R3 + ….. + Rn
Rumus dari Rangkaian Seri Resistor adalah :
1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn
- Relay
Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.
Pada dasarnya, Relay terdiri dari 4 komponen dasar yaitu :
- Electromagnet (Coil)
- Armature
- Switch Contact Point (Saklar)
- Spring
Berikut ini merupakan gambar dari bagian-bagian Relay :sumber : https://teknikelektronika.com/pengertian-relay-fungsi-relay/
Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :
- Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi CLOSE (tertutup)
- Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi OPEN (terbuka)
Berdasarkan gambar diatas, sebuah Besi (Iron Core) yang dililit oleh sebuah kumparan Coil yang berfungsi untuk mengendalikan Besi tersebut. Apabila Kumparan Coil diberikan arus listrik, maka akan timbul gaya Elektromagnet yang kemudian menarik Armature untuk berpindah dari Posisi sebelumnya (NC) ke posisi baru (NO) sehingga menjadi Saklar yang dapat menghantarkan arus listrik di posisi barunya (NO). Posisi dimana Armature tersebut berada sebelumnya (NC) akan menjadi OPEN atau tidak terhubung. Pada saat tidak dialiri arus listrik, Armature akan kembali lagi ke posisi Awal (NC). Coil yang digunakan oleh Relay untuk menarik Contact Poin ke Posisi Close pada umumnya hanya membutuhkan arus listrik yang relatif kecil.
- Motor DC
Motor arus searah dengan belitan medan seri adalah jenis motor traksi tertua. Ini memberikan karakteristik torsi kecepatan yang berguna untuk propulsi, memberikan torsi tinggi pada kecepatan rendah untuk akselerasi kendaraan, dan torsi menurun seiring dengan peningkatan kecepatan. Dengan mengatur belitan medan dengan beberapa tap, karakteristik kecepatan dapat bervariasi, sehingga memungkinkan kontrol akselerasi operator yang relatif mulus. Ukuran kontrol lebih lanjut diberikan dengan menggunakan pasangan motor pada kendaraan dalam kontrol pararel seri ; untuk operasi lambat atau beban berat, dua motor dapat dijalankan secara seri dari suplai arus searah. Dimana kecepatan yang lebih tinggi diinginkan, motor ini dapat dioperasikan secara paralel, membuat tegangan yang lebih tinggi tersedia di masing-masing motor sehingga memungkinkan kecepatan yang lebih tinggi. Bagian dari sistem rel mungkin menggunakan voltase yang berbeda, dengan voltase yang lebih tinggi dalam jangka panjang antar stasiun dan voltase yang lebih rendah di dekat stasiun yang hanya memerlukan pengoperasian lebih lambat.
Transistor sebenarnya berasal dari kata “transfer” yang berarti pemindahan dan “resistor” yang berarti penghambat. Dari kedua kata tersebut dapat kita simpulkan, pengertian Transistor adalah pemindahan atau peralihan bahan setengah penghantar menjadi suhu tertentu. Transistor pertama kali ditemukan pada tahun 1948 oleh William Shockley, John Barden dan W.H, Brattain. Tetapi, komponen ini mulai digunakan pada tahun 1958. Jenis Transistor terbagi menjadi 2, yaitu transistor tipe P-N-P dan transistor N-P-N.
BC547
Rumus dari Rangkaian Seri Resistor adalah :
Rtotal = R1 + R2 + R3 + ….. + Rn
Rumus dari Rangkaian Seri Resistor adalah :
1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn
- Sensor Infrared
Infra red (IR) detektor atau sensor infra merah adalah komponen elektronika yang dapat mengidentifikasi cahaya infra merah (infra red, IR). Sensor infra merah atau detektor infra merah saat ini ada yang dibuat khusus dalam satu modul dan dinamakan sebagai IR Detector Photomodules. IR Detector Photomodules merupakan sebuah chip detektor inframerah digital yang di dalamnya terdapat fotodiode dan penguat (amplifier). Bentuk dan Konfigurasi Pin IR Detector Photomodules TSOP.
- Sensor Infrared
Prinsip Kerja Sensor Infrared
Ketika pemancar IR memancarkan radiasi, ia mencapai objek dan beberapa radiasi memantulkan kembali ke penerima IR. Berdasarkan intensitas penerimaan oleh penerima IR, output dari sensor ditentukan.
- Logicstate
Gerbang logika atau logic gate adalah suatu entitas dalam elektronika dan matematika Boolean yang mengubah satu atau beberapa masukan logik menjadi sebuah sinyal keluaran logik. Gerbang Logika beroperasi berdasarkan sistem bilangan biner yaitu bilangan yang hanya memiliki 2 kode simbol yakni 0 dan 1 dengan menggunakan Teori Aljabar Boolean.
Sensor Vibration
Vibration sensor / Sensor getaran ini memegang peranan penting dalam kegiatan pemantauan sinyal getaran karena terletak di sisi depan (front end) dari suatu proses pemantauan getaran mesin. Secara konseptual, sensor getaran berfungsi untuk mengubah besar sinyal getaran fisik menjadi sinyal getaran analog dalam besaran listrik dan pada umumnya berbentuk tegangan listrik. Pemakaian sensor getaran ini memungkinkan sinyal getaran tersebut diolah secara elektrik sehingga memudahkan dalam proses manipulasi sinyal, diantaranya:
- Pembesaran sinyal getaran
- Penyaringan sinyal getaran dari sinyal pengganggu.
- Penguraian sinyal, dan lainnya.
Sensor getaran dipilih sesuai dengan jenis sinyal getaran yang akan dipantau. Karena itu, sensor getaran dapat dibedakan menjadi:
- Sensor penyimpangan getaran (displacement transducer)
- Sensor kecepatan getaran (velocity tranducer)
- Sensor percepatam getaran (accelerometer).
Pemilihan sensor getaran untuk keperluan pemantauan sinyal getaran didasarkan atas pertimbangan berikut:
- Jenis sinyal getaran
- Rentang frekuensi pengukuran
- Ukuran dan berat objek getaran.
- Sensitivitas sensor
Berdasarkan cara kerjanya sensor dapat dibedakan menjadi:
- Sensor aktif, yakni sensor yang langsung menghasilkan tegangan listrik tanpa perlu catu daya
(power supply) dari luar, misalnya Velocity Transducer.
- Sensor pasif yakni sensor yang memerlukan catu daya dari luar agar dapat berkerja.
Grafik perbandingan frekuensi dengan sensitivitas sensor getaran :
Gerbang logika AND ( IC 4081 )
Gerbang AND akan berlogika 1 apabila semua inputnya berlogika 1, namun bila salah satu atau semua keluarannya berlogika 0 maka keluarannya berlogika 0.Perhatikan Tabel kebenaran dibawah untuk menjelaskan gerbang AND
Gambar : Macam - macam gerbang logika
dan tabel kebenarannya
7 Segment Anoda
Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.
Supaya memudahkan penggunaannnya biasanya memakai sebuah sebuah seven segment driver yang akan mengatur aktif atau tidaknya led-led dalam seven segment sesuai dengan inputan biner yang diberikan. Bentuk tampilan modern disusun sebagai metode 7 bagian atau dot matriks. Jenis tersebut sama dengan namanya, menggunakan sistem tujuh batang led yang dilapis membentuk angka 8 seperti yang ditunjukkan pada gambar di atas. Huruf yang dilihatkan dalam gambar itu ditetapkan untuk menandai bagian-bagian tersebut.
Dengan menyalakan beberapa segmen yang sesuai, akan dapat diperagakan digit-digit dari 0 sampai 9, dan juga bentuk huruf A sampai F (dimodifikasi). Sinyal input dari switches tidak dapat langsung dikirimkan ke peraga 7 bagian, sehingga harus menggunakan decoder BCD (Binary Code Decimal) ke 7 segmen sebagai antar muka. Decoder tersebut terbentuk dari pintu-pintu akal yang masukannya berbetuk digit BCD dan keluarannya berupa saluran-saluran untuk mengemudikan tampilan 7 segmen.
Tabel Pengaktifan Seven Segment
Decoder (IC 74LS248)
IC BCD 74248 merupakan IC yang bertujuan mengubah data BCD (Binary Coded Decimal) menjadi suatu data keluaran untuk seven segment. IC 74248 yang bekerja pada tegangan 5V ini khusus untuk menyalakan seven segment dengan konfigurasi common anode. Sedangkan untuk menyalakan tampilan seven segment yang bekerja pada konfigurasi common cathode menggunakan IC BCD 7448.
IC ini sangat membantu untuk meringkas masukan seven segmen dengan jumlah 7 pin, sedangkan jika menggunakan BCD cukup dengan 4 bit masukan. IC BCD bisa juga disebut dengan driver seven segment. Berikut konfigurasi Pin IC 74248.
Konfigurasi Pin Decoder:
- Pin Input IC BCD, memiliki fungsi sebagai masukan IC BCD yang terdiri dari 4 Pin, nama pin masukan BCD dilangkan dengan huruf kapital yaitu A, B, C dan D. Pin input berkeja dengan logika High=1.
- Pin Ouput IC BCD, memiliki fungsi untuk mengaktifkan seven segmen sesuai data yang diolah dari pin input. Pin output berjumlah 7 pin yang namanya dilambangkan dengan aljabar huruf kecil yaitu, b, c, d, e, f dan g. Pin Output bekerja dengan logika low=0. Karena itulah IC 7447 digunakan untuk seven segment common anode.
- Pin LT (Lamp Test) memiliki fungsi untuk mengaktifkan semua output menjadi aktif low, sehingga semua led pada seven segmen menyala dan menampilkan angka 8. Pin LT akan aktif jika diberi logika low. Pin ini juga digunakan untuk mengetes kondisi LED pada seven segment.
- Pin RBI (Ripple Blanking Input) memiliki fungsi untuk menahan data input (disable input), pin RBI akan aktif jika diberi logika low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.
- Pin RBO (Ripple blanking Output) memiliki fungsi untuk menahan data output (disable output), pin RBO ini akan aktif jika diberikan logika Low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.
Pada aplikasi IC dekoder 74248, ketiga pin (LT, RBI dan RBO) harus diberi logika HIGH=1 agar tidak aktif. Baik IC 74248 atau 7448 pada bagian output perlu dipasang resistor untuk membatasi arus yang keluar sehingga led pada seven segment bekerja secara optimal. Berikut ini rangkaian IC dekoder 7448 untuk konfigurasi seven segment common cathode.
ENCODER 74LS147
74LS147 mengkodekan input keypad ke BCD (logika negatif). Satu set inverter kemudian mengubah BCD sejati negatif menjadi BCD sejati positif. BCD yang diubah kemudian dimasukkan ke dalam dekoder tampilan LED tujuh segmen 7447
- Logicstate
- Pembesaran sinyal getaran
- Penyaringan sinyal getaran dari sinyal pengganggu.
- Penguraian sinyal, dan lainnya.
Sensor getaran dipilih sesuai dengan jenis sinyal getaran yang akan dipantau. Karena itu, sensor getaran dapat dibedakan menjadi:
- Sensor penyimpangan getaran (displacement transducer)
- Sensor kecepatan getaran (velocity tranducer)
- Sensor percepatam getaran (accelerometer).
Pemilihan sensor getaran untuk keperluan pemantauan sinyal getaran didasarkan atas pertimbangan berikut:
- Jenis sinyal getaran
- Rentang frekuensi pengukuran
- Ukuran dan berat objek getaran.
- Sensitivitas sensor
Berdasarkan cara kerjanya sensor dapat dibedakan menjadi:
- Sensor aktif, yakni sensor yang langsung menghasilkan tegangan listrik tanpa perlu catu daya
(power supply) dari luar, misalnya Velocity Transducer.
- Sensor pasif yakni sensor yang memerlukan catu daya dari luar agar dapat berkerja.
Grafik perbandingan frekuensi dengan sensitivitas sensor getaran :
Gambar : Macam - macam gerbang logika dan tabel kebenarannya |
Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.
Supaya memudahkan penggunaannnya biasanya memakai sebuah sebuah seven segment driver yang akan mengatur aktif atau tidaknya led-led dalam seven segment sesuai dengan inputan biner yang diberikan. Bentuk tampilan modern disusun sebagai metode 7 bagian atau dot matriks. Jenis tersebut sama dengan namanya, menggunakan sistem tujuh batang led yang dilapis membentuk angka 8 seperti yang ditunjukkan pada gambar di atas. Huruf yang dilihatkan dalam gambar itu ditetapkan untuk menandai bagian-bagian tersebut.
Dengan menyalakan beberapa segmen yang sesuai, akan dapat diperagakan digit-digit dari 0 sampai 9, dan juga bentuk huruf A sampai F (dimodifikasi). Sinyal input dari switches tidak dapat langsung dikirimkan ke peraga 7 bagian, sehingga harus menggunakan decoder BCD (Binary Code Decimal) ke 7 segmen sebagai antar muka. Decoder tersebut terbentuk dari pintu-pintu akal yang masukannya berbetuk digit BCD dan keluarannya berupa saluran-saluran untuk mengemudikan tampilan 7 segmen.
Tabel Pengaktifan Seven Segment |
IC BCD 74248 merupakan IC yang bertujuan mengubah data BCD (Binary Coded Decimal) menjadi suatu data keluaran untuk seven segment. IC 74248 yang bekerja pada tegangan 5V ini khusus untuk menyalakan seven segment dengan konfigurasi common anode. Sedangkan untuk menyalakan tampilan seven segment yang bekerja pada konfigurasi common cathode menggunakan IC BCD 7448.
IC ini sangat membantu untuk meringkas masukan seven segmen dengan jumlah 7 pin, sedangkan jika menggunakan BCD cukup dengan 4 bit masukan. IC BCD bisa juga disebut dengan driver seven segment. Berikut konfigurasi Pin IC 74248.
Konfigurasi Pin Decoder:
- Pin Input IC BCD, memiliki fungsi sebagai masukan IC BCD yang terdiri dari 4 Pin, nama pin masukan BCD dilangkan dengan huruf kapital yaitu A, B, C dan D. Pin input berkeja dengan logika High=1.
- Pin Ouput IC BCD, memiliki fungsi untuk mengaktifkan seven segmen sesuai data yang diolah dari pin input. Pin output berjumlah 7 pin yang namanya dilambangkan dengan aljabar huruf kecil yaitu, b, c, d, e, f dan g. Pin Output bekerja dengan logika low=0. Karena itulah IC 7447 digunakan untuk seven segment common anode.
- Pin LT (Lamp Test) memiliki fungsi untuk mengaktifkan semua output menjadi aktif low, sehingga semua led pada seven segmen menyala dan menampilkan angka 8. Pin LT akan aktif jika diberi logika low. Pin ini juga digunakan untuk mengetes kondisi LED pada seven segment.
- Pin RBI (Ripple Blanking Input) memiliki fungsi untuk menahan data input (disable input), pin RBI akan aktif jika diberi logika low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.
- Pin RBO (Ripple blanking Output) memiliki fungsi untuk menahan data output (disable output), pin RBO ini akan aktif jika diberikan logika Low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.
Pada aplikasi IC dekoder 74248, ketiga pin (LT, RBI dan RBO) harus diberi logika HIGH=1 agar tidak aktif. Baik IC 74248 atau 7448 pada bagian output perlu dipasang resistor untuk membatasi arus yang keluar sehingga led pada seven segment bekerja secara optimal. Berikut ini rangkaian IC dekoder 7448 untuk konfigurasi seven segment common cathode.
ENCODER 74LS147
74LS147 mengkodekan input keypad ke BCD (logika negatif). Satu set inverter kemudian mengubah BCD sejati negatif menjadi BCD sejati positif. BCD yang diubah kemudian dimasukkan ke dalam dekoder tampilan LED tujuh segmen 7447
MPXA6115A6U
Sensor tekanan adalah sensor untuk mengukur tekanan suatu zat. Satuan tekanan sering digunakan untuk mengukur kekuatan dari suatu cairan. Satuan tekanan dapat dihubungkan dengan satuan volume (isi) dan suhu. Semakin tinggi tekanan di dalam suatu tempat dengan isi yang sama, maka semakin tinggi suhunya. Hal ini dapat menjelaskan mengapa suhu di dataran tinggi (pegunungan) lebih rendah daripada di dataran rendah, karena dataran rendah mempunyai tekanan yang lebih tinggi. Sensor MPXA6115A6U mengintegrasikan on-chip, op amp bipolar sirkuit dan network resistor film tipis untuk memberikan sinyak output tinggi dan kompensasi suhu. Bentuk kecil faktor dan keandalan tinggi dari integrasi chip membuat tekanan ada pilihan yang logis dan ekonomis untuk perancangan sistem.
Grafik Tegangan Output Sensor Tekanan MPXA6115A6U
Data output dari sensor MPXA6115A6U berupa data analog. Data ini akan diubah ke dalam desimal dengan ADC, kemudian diberikan ke mikrocontroler master yang hasilnya diubah dalam satuan kiloPascal (kPa) dengan menggunakan persamaan berikut :
Buzzer
Kata buzzer sebetulnya berasal dari Bahasa Inggris, artinya bel, lonceng, atau alarm. Sedangkan pengertian buzzer secara harfiah adalah alat yang digunakan untuk atau dimanfaatkan untuk menyampaikan dan menyebarluaskan pengumuman. Jadi pada bagian ini buzzer digunakan sebagai output yaitu sebagai penanda atau sebagai bel peringatan.
Touch sensor Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). Seiring dengan perkembangan teknologi, sensor sentuh ini semakin banyak digunakan dan telah menggeser peranan sakelar mekanik pada perangkat-perangkat elektronik.
Kata buzzer sebetulnya berasal dari Bahasa Inggris, artinya bel, lonceng, atau alarm. Sedangkan pengertian buzzer secara harfiah adalah alat yang digunakan untuk atau dimanfaatkan untuk menyampaikan dan menyebarluaskan pengumuman. Jadi pada bagian ini buzzer digunakan sebagai output yaitu sebagai penanda atau sebagai bel peringatan.
JENIS-JENIS SENSOR SENTUH
Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.
Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.
(Gambar 18. jenis touch sensor)
Sensor Kapasitif
Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.
Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.
Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.
Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.
Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.
Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.
Sensor Resistif
Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.
Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).
Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.
Dalam keadaan IDLE output yang dihasilkan adalah LOW (konsumsi daya sangat kecil) sedangkan saat ada jari yang menyentuh modul ini output yang dihasilkan adalah HIGH. Jika tidak ada aktifitas lebih dari 12 detik maka modul otomatis akan kembali ke mode IDLE (hemat daya).
Modul dapat dipasang di belakang permukaan plastik, kaca dan bahan non-logam lainnya untuk menutupi permukaan sensor. Selain itu, jika kita dapat mengatur posisi yang tepat untuk sentuhan, kita juga dapat menyembunyikannya di dalam dinding, meja dan bagian tombol tersembunyi lainnya.Ketika jari menyentuh bagian sensor, modul menghasilkan sinyal high.a. Arus Output Pin Sink (@ VCC 3V, VOL 0.6V): 8mAb. Arus Output pin pull-up (@ VCC=3V, VOH=2.4V): 4mAc. Waktu respon (low power mode): max 220ms
1. Dalam keadaan normal, modul menghasilkan sinyal low (hemat daya).d. Waktu respon (touch mode): max 60ms
Cara kerja:
4. Dilengkapi 4 lobang baut untuk memudahkan pemasangan3. Jika tidak disentuh lagi selama 12 detik kembali ke mode hemat energi.
Kelebihan:
- Konsumsi daya yang rendah
- Dapat menggantikan fungsi saklar tradisional- Bisa menerima tegangan dari 2 ~ 5.5V DC
Rumus Tegangan sentuh maksimal
πΈπ = πΌπ( π
π + 1.5 ππ )
Ket: πΌπ = Arus fibrilasi π
π = Nilai tahanan pada badan manusia ππ = Tahanan Jenis tanah
Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.
Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).
Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.
Tidak ada komentar:
Posting Komentar